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" nitrate (PETN) explosives were used. These various experiments incorpprated

large differences in explosive specific ene gx‘(&]? soil cohesiog_ ‘¢, soil
angle of internal friction ¢, charge weight Wand~gravitational acceieration,

e Experimental results show substantial differences in cratering
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The gravity-scaled yield [ T = (g/Qe)(U/6)1/3], previously used to correlate
centrifuge cratering results in dry Ottawa sand, has been modified to
accurately account for the effects of variations in c and ¢. When cratering
efficiency is plotted as a function of this strength-gravity-scaled yield
iz,all experimental results fall on a single curve.

These results show that-ht small actual yields soil cohesion dominates the
cratering process. At rger yields, the cohesion has little effect, but
the angle of internal friction becomes an important variable because of the
large overburden. The behavior of a material such as alluvium, having
nonzero values for both <4 and¢, shows cube-root scaling at low yields but
becomes asymptotic to dry sand behavior at large yields. Neither behaves as
a zero-strength material, and neither shows quarter-root scaling for scaled
yields approaching megatons of TNT. Ao
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SUMMARY

The use of increased gravity as a necessary and sufficient condition
to correctly simulate 1large-scale cratering events with small Tlaboratory
experiments was theoretically and experimentally verified in the previous
% year's work. During that program cratering experiments were carried nut for a
; range of almost 11 decades of gravity-scaled energy in dry Ottawa sand. In
E addition, a highly successful simulation of the JOHMIE BOY nuclear event was
: performed by a combination of a nuclear high-explosive (HE) equivalence
generated by a code calculation, together with the small-scale simulation of i
the resulting HE event on the centrifuge.
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The program reported here was intended to investigate variations in
cratering phenomena due to differing cratering media. In particular, parts of
the program included:

1) a series of experiments in a nominal 4-percent moisture desert
alluvium over the maximum gravity-scaled energy range of about
11 decades’,

2) experiments in aliuvium with moisture content from near zero to

7-1/2 percent,

3) experiments in a fully saturated, dense Ottawa sand, and
4) experiments in an oil-base modeling clay.

A1l of the experiments were conducted with half-buried spherical charges.

In addition to the experimental program, supporting theoretical
analyses were conducted to organize and interprct the experimental results and
to generate a rational prediction method for other materials. A theory was

i constructed which correlates the experimental results using a single gravity-
: size-strength parameter, 52. This parameter correctly measure$ the equivalence
E of all combinations of gravity, charge size, medium and charge properties
i considered.

The theory identifies two distinct regimes. For a given soil and
: charge type, a cohesion-dominated regime exists for small charge size. In this
} regime, cube-root scaling of crater volume is predicted. The value of the
cratering efficiency in this regime depends directly on the cohesion of the
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material, If cohesion is zero, such as for dry granular materials, this regime
is not observed.

A transitiorn to a lithostatic-pressure-dominated regime occurs at a
value of charge size which depends upon the relation between the cohesion and
the angle of internal friction. For charge sizes sufficiently larger than this
value, the cratering efficiency decreases with increasing charge size. This
decrease approaches a straight line on a log-log plot. However, a decrease to
the classical ‘“quarter-root" scaling, suggested in the literature, 1is not
observed, This failure is attributed to the dependence of the coupling
effiéiency on the specific energy of the explosive and on the other variables
included in the theory.

The results of this program illustrate the utility of the centrifuge as
a tool to explore the dependence of cratering phenomena on a multitude of
parameters in a precise and inexpensive way. The results of the desert alluvium
experiments explain the discrepancy between the small-scale experiments at 1 G
and the large field shots, and furthermore clarify the variations found in 1-G
experiments in different materials such as saturated sand.
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SECTION 1
INTRODUCTION

Crater size and shape depends upon both the soil type and the explosive
type for a fixed source geometry. Differences are attributed to the influence
of material properties. Significant variations have been observed in the many
field experiments in materials ranging from water, on one extreme, to granite,
on the other, and for energy sources consisting of various nigh explosives,
nuclear explosives, and hypervelocity-impact projectiles.

The data scatter inherent in large-scale field events has made it
difficult to determine quantitatively how medium and source properties affect
cratering mechanisms. On the other hand, the more precise laboratory tests at
small scale do not always reproduce the phenomenology of large scale events.

Previcus results of a theoretical and experimental program (Schmidt and
Holsapple, 1978a) demonstrate that 1large explosive events can be directly
simulated at small scale, if the test is performed at elevated gravity. These
conditions are obtained by performing the experiments on a centrifuge, with a
gravity variation from 10 to greater than 500 G. Both thecretical and
experimental results verify that, for large- and small-scale tests performed in
the same material with the same explosive, all aspects of the cratering
phenomena are correctly simulated. A poscible anomalous effect of centrifuge
testing, e.qg., Coriolis force, has not proven to be significant. The energy of
the simulated large-scale test is equal to 93E, where E is the energy of the
small-scale test conducted at elevated gravity g. Consegquently, a variation of
gravity from 1 to 500 G allows a simulation of explosive events over a range of
(500)3 = 125 x 106, or more than 8 decades of enrergy.

Extending this earlier work, experiments were successfully performed in
both dry and wet Ottawa sand, desert alluvium of various moisture content, and
an oil-base clay during the current program. Both lead-azide (PhNG) and PETN
explosive charges were used. These experiments gave data over a large range of
soil strengths, explosive properties, charge mass and gravitational
acceleration, The cratering results are reproducible and consistent with
existing field evonts, These data, together with a consideration of the
variations in material properties and energy sources, provide ar empirical base
for the construction of a theory that predicts the effects of redia strength and
energy-source propertias on crater volume, ra i1us and depth.
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SECTION 2
EXPERIMENTAL RESULTS

2-1 CENTRIFUGE DESCRIPTION

!
|
1
f
i
i

The Boeing 600-G geotechnical centrifuge was used in this study. This
machine has a dynamic load rating of 60.000 G-kg (66 G-tons) at 620 rpm and wac
constructed using the cerodynamic housing and main shaft assembiy from a Gyrex
Model 2133 centrifuge. The rotor was designed and fabricated by the Boeing
Comnany to incorporate symmetric swing baskets for geotechnic applications. The
arm radius to the fully extended base plate is 139.7 cm. The maximum payload
mass is 250 kg on each rotor end. An overall view is shown in Fig. 2.1; the
details of the swing basket and soil-sample cont¢iner are shown in Fig. 2.2.
Power is provided by a 30-horsepower Eaton Dynamatic Model ACM-326-910R drive
unit incorporating an adjustable speed, constant-torque eddy-current clutch.
The unit has electrical dynamic braking, allowing shut-down from maximum rpm in
less than 30 seconds. The constant speed motor and variable drive unit are shock
mounted and coupled to the main shaft with a belt to minimize vibration.

The rotor shaft is equipped with 24 slip rings for instrumentation
channels, three 220-V.a.c.-power slip rings and a hydraulic slip ring which can
accommodate either gas or liquid. A pair of motor-driven Nikon F2 35-mm still
cameras are hub-mounted in a stereo configuration. These cameras provide
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stereophoto coverage of the number-one rotor end with a maximum framing rate of
six per second. A 16-mm movie camera is also hub-mounted and operates at up to
v 500 frames per second, giving movie coverage of the number-one rotor end.
[Tiumination for all cameras is provided by three 6C0-watt quartz-halogen lamps.
An alternate scheme uses Sylvania FF-33 long-duration (3-s.c) flash lamps.

-
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2-2 RESULTS OF SMALL-SCALE CXPERIMENTS

Various small-scale explosive experiments were performed on the
centrifuge. Spherical explosive charges manufactured by the R. Stresau
Laboratories of Spooner, Wisconsin were used exclusively. These included three
different sizes of PETN (0.49 gm, 1.34 gm and 4.08 gm) and one of PbN6 (1.70
gm). A1l were centrally initiated by applying 40 V.d.c. to a notched
0.0127-cm-diameter tungsten wire. The PETN charges contained a nominal 0.130-gm

10
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Fig. 2.1  Boeinqg 500-G geotechnic centrifuge,
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Fig. 2.2 Sample container and stereo-camera configuration
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concentric sphere of silver azide tco facilitate ignition. In each test the
explosive sphere was hal f-buried by excavating a small hole after screening the
final surface on the soil sample.

The soils tested included dry Ottawa sand, desert alluvium obtained
from Kirtland AFB (with moisture content from near zero up to 7.5 percent) and
an oil-base modeling clay. In addition, several shots were made in a nearly
saturated Ottawa sand demonstrating the feasibility of conducting such
experiments. Details of the experimental technique describinyg z0il sample
preparation, determination of explosive properties, test procedure and crater
measurement scheme is given by Schmidt and Holsapple (1978a).

A complete list of experimental conditions and the resulting crater
dimensions is given in Tables 2.1 through 2.4, Appropriate nondimensional

quantities to be used in the analysis to follow are also tabulated. The
analysis of these data is considered in the following sections.

2-3 SATURATED-SAND EXPERIMENTS

The final series of shots was designed to assess the feasibility of
using a centrifuge to examine cratering behavior in saturated media. Four shots
in Ottawa sand at 100 G were conducted first. The first two (Run 26, Table 2.4)
provided a comparison of grain size effects for comparable dense sands. Ottawa
Sawing sand (nominal range of grain size 0.30-0.60 mm) was wetted to a final
wet density of 2.08 gm/cc. This was contrasted to Ottawa Banding sand (nominal
range of grain size 0.10-0.20 mm) that was wetted to a final wet density of
2.06 gm/cc. Identical charges consisting of 1.70 gm spheres of lead azide were
half buried in each sample. The crater formed in the coarser grain Sawing sand
was 2.23 times larger in volume than that produced in the Banding sand.

A Photc-Sonic 16-mm movie camera run at 400 frames/sec was used to
record the shot in the coarser Sawing sand. The camera was started after the
centrifuge was a: the appropriate rpm just prior to firing, providing a preshot
reference. The centrifuge was held at 100 G for 60 seconds after firing to
observe any post-excavation shape modification, due to possible liquefaction or
slumping. The 400-foot film, which recorded for 42 seconds showed no evidence of
any shape change following crater formation. In addition to the movie coverage,
a stereo-still-picture sequence confirms that no significant shape change took
place during deceleration of the centrifuge. This is especially significant

13
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because the water table goes thrcirgh a shape change as the sample is accelerated
from 1-G conditions., In the certrifuge environment the water conforms to a
cylindrical ceopotential surfase, whereas the sand surface remains flat.
Therefore to achieve a water table tha' is tangent to the ground surface at shot
point (127.1 cm from the centrifuge axis), the sand surface must be 2.1 cm below
the rim of the 46-cm-diameter container. Under these conditions the water
table, initially sufficiently above the sand surface, will contour and become
tangent to the surface along the diameter of the sample that is parallel to the
centrifuge axis of vrotation. Excess water will run over the edge. An
alternative to this configuration would be to contour the sand surface to
cenform to the cylindrical geopotential surface. In either case, however, there
will be a relative motion of the water as the centrifuge rotor accelerates from
rest. For large enough arm radius, this curvature effect can be neglected as
long as the relative water motion does not disturb the sand upon start up or
shut down of the centrifuge.

The second pair of shots (Run 27, Table 2.4) was a carefully controlled
reproducibility test. Ottawa Flintshot sand was pluviated to a dry density
state of 1.802 gm/cc. Water was carefully added to provide a final wet density
of 2.113 gm/cc. Within the accuracy of these measurements and an assumed grain
specific gravity of 2.65 gm/cc, the degree of saturation was greater than 97
percent. The goal was to achieve sand states comparable to those of Piekutowski
(unpublished data) allowing direct comparison of the centrifuge data.

The resuits indicate a high degree of reproducibility. The rcrater
radius and the crater depth were within 1 percent, respectively, for the two
craters. The crater volumes differed from each other by 15 percent., The
coefficient of variation (c.o.v.) for the two 100-G centrifuge shots was +11
percent. This compares favorably with c.n.v. of +13 percent for the six 1-G
shots performed by Piekutowski. Considering the complexity of charge placement
and other experimental constraints, associated with the centrifuge, these
results indicate that cratering experiments in saturated (or nearly saturated)
media can be satisfactorily performed at high G in the centrifuge. On Run 27
the movie camera framing rate was 50 per second permitting sufficient recording
time to follow the deceleration phase, confirminy the observations of the
previous run regarding crater stability.

The final pair of shots extended the range of gravity variation to 500
G and provided a data point at 10 G. Some water wave washing of the crater was
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observed on the movie coverage of the 10-G shot (?8-X). This filled in the
crater somewha. creating the asymmetry seen in the profile plots in Appendix A.

2-4 STRESS-WAVE MEASUREMENTS

A series of soil-stress measurements were made using carbon gages
placed at known distances from the explosive charge. Thirteen shots were made
under various operating conditions. Some were fired with the centrifuge not
running. These provided a check on the slip rings in the static condition
versus direct connection to the oscilloscope, bypassing the rings, Six stress
gage shots were made with the centrifuge in operation at 200 G and at 500 G.
These were in addition to the crater formation shots discussed below.

About half of the shots were successful in producing stress profiles.
The remaining shots failed due to premature trigger problems due to electrical
coupling in the slip ring circuitry from the charge firing current. A 3-mm
diameter piezo pin in contact with the charge works very weil as a scope trigger
and provides a reliahle time reference for shock initiation into the soil. From
this preliminary series of tests, it is concluded that dynamic on-board
measurements can be made. Appropriate calibration methods need to be developed.
This includes not only stress amplitude but a technique to place the gage
without disturbing the ctample as well as knowing its exact location. The slip
ring transmission appears adequate but cross talk and electrical noise
can be a problem under some circumstances. This can be eliminated using
on-board recording systems which are currently under development,

2-5 SOIL MATERIAL PROPERTY TESTS

To facilitate the correlation of cratering with soil material
properties, certain laboratory tests were performed. The bulk of the tests were
performed under subcontract to Shannon and Wilson, Inc., Geotechnic Consultants,
Seattle, WA. These consisted of unconsolidated-undrained triaxial tests and
also some direct shear tests. The reported laboratory test data supplied by
Shannon and Wilson are included in Appendix B.

Mechanical property data were obtained for Kirtland Air Force Base
(KAFB) alluvium at various moisture contents, dry Ottawa sand of three different
grain sizes and Permoplast oil-base clay. Two series of triaxial tests were
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performed, the first was conducted at high confining pressures, up to 27.5 bars.

A second series was performed at lower confining pressures, on the order of 1.4

bars and lower. From these latter tests, soil cohesion and angle of internal

friction were determined for use in the analytical model for crater volume

(developed in Section 3), incorporating soil material properties. The direct
Shear tests were performed to bracket the zero-confining-pressure cohesion

intercept. These values are considerably lower than the extrapolated intercept

from the low-pressure triaxial tests. This may be due in part to the nonuniform

stress state encountered in this type of test. For calculational purposes, the
direct shear values were assumed to be a lower limit for the cohesion and the
low-pressure triaxial test to be an upper bound.
tests show some reduction of tan ¢, which

The high-pressure triaxial

is commonly observed for soils.
Pepresentative values for all three soil types are given in Sections 3 and 5.
The actual test results are included in Appendix B.
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SECTION 3
A MATERIAL STRENGTH MODEL FOR CRATER VOLUME

3-1 DIMENSTONLESS PARAMETERS

The basis for direct simulation of large field events using small
laboratory experiments at large gravity results from an analysis of the
similarity requirements between the two experiments. A complete similarity
analysis of the governing equations of continuum mechanics in their general form
has been presented by Schmidt and Holsapple (1978a, 1980) and will not be
reproduced here. When restricted to experiments with a firite set of governing
variables, a set of dimensionless parameters can be derived. Two experiments
are similar when each of these dimensionless parameters has the same value for
both experiments.

For the application here, consider the case of a half-buried
(zero depth of burst) spherical explosive detonated in a homogeneous so0il
medium. The dependent variable of interest is the apparer crater volume V. It
is assumed to depend on soil density p, soil strength Y, explosive mass W,
explosive specific energy Qe' explosive mass density $§, and gravity g.
Furthermore, a Mohr-Coulomb strength model for soil is assumed

Y=c+ P tan¢ (3.1)

50 that the strength Y under confining pressure P is determined by the cohesion
¢ and the angle of internal friction ¢. Therefore, the dependent variable V is
assumed to be determined by seven independent variables, o, c, ¢, W, Qe, s, g,
for a total of eight variables. These eight variables can be formed into five
dimensionless groups defined and referred to as follows:

Vo

v oW (cratering efficiency) (3.2a)
g M 1/3
WP ] 03) (gravity-scaled yield) (3.2b)
e
LA -% (mass density ratio) (3.2c)
21
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L %ve (cohesion parameter) (3.2d)
Tpoo= tan ¢ (internal friction parameter) (3.2e)

Therefore, the dependent pi-group ™y must be deterinined by the remaining four,

U F (“2’ Tas T ﬂ5) . (3.3)

For a given soil-explosive combination, T3 Ty and " are fixed, and A becomes

a function solely of oo Two experiments in the same material using the same

explosive are similar whenever T, has the same value and they will have the same

value for the cratering efficiency T These two experiments can differ in

explosive mass W and in gravity g, but, in order to be similar, the product g°W
must be the same. Thus, an experiment with four grams of explosive at 500 G is
similar to and directly simulates an experiment of 500 tons of the same
explosive at 1 G.

The function F in Eq. 3.3 can be determined using exverimental results
and its dependence upon the explosive and the soil properties is the focus of
this report. The differences in the observed ", dependence for the various
soil-expiosive pairs determine the influence of the material property parameters
. and Ty The form of this latter dependence 1is suggested by a

T
3 4
consideration of the fundamental physics of the phenomena, as will be shown.

3-2 EFFECTS OF MATERIAL STRENGTH AND EXPLOSIVE PROPERTIES

A theory that unifies the experimental results presented in Fig. 3.1
is desired. This theory must account for and quantify the variations due to

medium and explosive properties.
The previously identified variables segregating the different

materials include the density o, cohesion ¢ and angle of internal friction ¢ of
the soil medium, and the density & and specific energy Qe of the explosive.
These variables enter into the three dimensionless pi-groups T3s "y and g

The process of cratering by a high explosive is a complex result of
the kinematics and dynamics initiated by the detonation. Thies u=tonation
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process is commonly modeled as a shock propagating through the explosive, with
the detonation products assumed to behave as a perfect gas. The pressure
behind the shock is given by the Chapman-Jouguet pressure

Pey = 20y - 1360, (3.4)

where v, the ratio of the specific heats, is taken to be constant.

The effects of this shock on the soil can be studied by consider’ng an
energy balance for that material. The equation expressing the balance of
mechanical and thermodynamic energy for the motion of a general continuum can be
written as (Truesdell and Toupin 1960)

t t
A(KE) = I Pdt + j Qdt - A(IE) (3.5)

with

e
i}

J. o r Jv - 4555 * N da, (3.7)
R S

and where the symbols are defined as

increment of kinetic energy
increment of internal energy

rate of work due to forces

rate of he?’ing

surface - actiens

velocity of material particles

mass density

bodv forcc per unit mass

internal heating rate per unit mass
heat flux vector

D+ 3 T+ D <+ 4O U ~—r w-

area differential clement

(o8
jo 1]
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dv: volume differential elemont
dt: time differential
n: unit vector normal to da
and R is any material region enclosed by the closed surface S.

In the present application, these equations are applied to the region
of soil material excavated to create the crater, the region labeled as R in Fig.
3.2. The coupling of the source energy is via a pressure pulse transmitted
across the source-soil and the air-soil interface, denoted as the surface S] in
Fig. 3.2. Energy transport via radiation or heat conduction is inconsequential
for high-explosive sources: consequently, Q = 0. The rate of mechanical work
across this interface S] is given by

Py = IE * v da. (3.8)

This rate of work, integrated over the duration of the process, is that fraction
of the total energy that does work on the excavated material. For near-surface
events, much of the enerqgy is released to the atmosphere. Other fractions of
the total energy lost are in the shock compression and subsequent adiabatic
unloading of the ground material and in the internal shearing of the material

being retained as internal energy. Recognizing these loss mechanisms, it is
assumed that

t
f Py dt - 8(IE) = nE (3.9)
0

where E is the total energy of the explosive and n is that fraction that
contributes to the crater excavation. Consequently, if S5 denotes the interface
between the excaveted and the remaining soil (the crater boundary interface,
Fig. 3.2), and wok at the soil-air inte-face is ignored, then

nE = A(KE) - J. ‘[
o} S

f'Vda+J‘ < Y. Vodv|dt
R
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which states that the energy nE produces an increment in kinetic energy and does
work against the body forces and along the crater interface. The net change in
kinetic energy is zero at the termination of the process. The work against the
gravity-induced body forces can be written as an increment of potential energy.

{ Thus,
!
nE = A(PE) + wY (3.11)
| t -
; where A(PE) = - f J’ pb * v dv [dt
; o|“YR
is the increment of potential energy, j
t ,'
and wY = -J. T eV daldt (3.12) f
0 S.
(3

is the work done on the excavated material at the crater boundary. This balance
equation states that the energy nE goes into two parts: the change in potential
cnergy required during the excavation and the work done as the excavated .
material shears along the crater boundary. Since this deformation requires
overcoming the strength of the soil material, it is referred to as the work done
against the material strength. This fundamental energy balance, but without the
n coupling factor, was attributed to Charters and Summers (1959) and by Gault
| and Wedekind (1977).

| The exact value of the two terms on the right in Eq. 3.11 wil' depend

on the details of the flow field during the cratering process and on the final

crater configuration. However, by using certain simplifying assumptions and
é considering the dimensions involved, the form of these two terms can be deduced.
: In particular, it is now assumed that

1) the crater is hemispherical with radius r;

} 2) the work at the crater interface is proportional to the material
strength Y;
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3) the material strength Y is given by the Mohr-Coulomb model (Eq.
3.1), where c is the cohesion, P the confining pressure, and ¢ the
angle of internal friction; and

4) A measure of the confining pressure P is the 1ithostatic pressure
p~- at the bottom of the crater.

If the strength Y (Eq. 3.1) is substituted for the stress t in Eq.
3.12, two terms result. The first is proportional to the cohesion ¢ and the
second to tan ¢. An integration over the crater surface So» taken here to be a
hemisphere for convenience, will give the form:

Wy = Cqlerd) + C, (ogr' tan o), (3.13)

where G and C, are two numerical constants which depend upon the crater
geometry. The form of Eq. 3.13 is general and applies to any axi-symmetric
family of crater shapes where the depth is a given frection of the radius.

The first term results from the cohesion ¢ acting on a surface area
proportional to r and shearing along a distance proportional to r. The second
term is due to a confining pressure proportional to Pgr acting on the same
surface that is proportional to rZ and sheared over a distance proportional to
r.

Likewise, the potential energy term is given by

A(PE) = Cq pgrt (3.14)

where the excavated volume is proportional to r3. the elevation change is
proportional to r and the constant Cq is determined by the geometry of Lhe
crater shape. Consequently, the energy balance has the general form

4

ng = C] (cr3) + C2 (egr’ tan ¢) + c3(ogr4). (3.15)

The values of C], C2, and C3 also depend on the flow field leading to the crater
excavation. For example, Gault and Wedekind (1977) give a similar form, but
without the n factor, or the tan ¢ term, and with values for Gy and Cq based
upon additional simplifying assumptions.

The energy of the explosive given in terms of the charge radius, a, is

28




E= (4r/3) a3 Q.- (3.16)

The numerical factor, 4r/3, can be combined with the other coefficients in Eq.
3.15 when Eq. 3.16 is used to get

3 4
ne T, %0; (5) + (3 Z) (3) (T, tan o +T,). (3.17)
E The dimensionless groups defined in Eqs. 3.2 can be rewritten as »
TN LA N A IO B IS 3 - |
v @ ) Ea) ey G Q) (3.18a) |
f 1/3 1/3 i
L _ W - 4n da ! :
23, ® @) g (3.1ub) f
§ i
1(3 = % (3.]8(:)
= &
: "4 oq, (3.18d)
L
i "5 = tan ¢, (3.18e)
Therefore Eq. 3.17 can be written as
4 ) z
n = Kylmg) (1) + (np) ()3 ()73 (k, mg 4 kg). (3.19)

The factor "y o= p/8, which occurs to the negotive 1/3 power, does not vary
significantly over the range of experiments consider2d here. As a
simplification, it is assumed to be constant and i: henceforth included in the
K2 and K3 coefficients giving

i
|
‘i
i
i
i

- 4/3
n = K] Tyt t (K2 e + |(3) LPI (3.20)

F
\
E
!
)
[
E
|

!

Equation 3.20 can be used to express "y 1% a function of the other
parameters Ty Tg and Ta recognizing that the coupling factor n is expected to

depend upon oy Ta and e Only after specifying this dependence is it possible
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to determine the explicit form of the solution to this equation. However, it is
instructive to consider certain limiting cases. For example, consider a series
of experiments in a medium having zero cohesion c. In this case, "y = 0, "o is
a constant and Eq. 3.20 reduces to
L n3/4 w2'3/4 . (3.21)
For a series of experiments in a cohesionlass material for a given explosive,
and ossuming that the efficiency n is independent of "o
v e g3/8 o374 (3.22)
In this <ase, at fixed gravity, each crater linear dimension varies with the
one-quarte~ root of the enerqgy, often referred to as quarter-root scaling.
However, experimental results (Piekutowski, 1975; Schmidt and Holsapple, 1978a,
1980) indicate that the coupling efficiency n depends upon Qe and g; hence, n is
not independent of oo Furthermore, it can also be expected to depend on e
Consequently, quarter-root scaling nas not heen observed for half-buried high
explosive charges, even in cohesionless materials; whereas for hypervelocity
impact into water, Gault (1978) ohtained cratering data that approaches quarter-
root scaling--1/3.83.
A second special case arises when the term with "y is small compared to
the first term in Eg. 3.40. This occurs if either g or the charge energy E is
sufficiently small, and tr= material has non-zero cohesion. Then, noting that

¥4 is constant for a giver soil-explosive combination, the cratering efficiency
is proportioné]l to the coup'ing factor,

“V « n, (3.23)

Furthermore, if n is inaependent of "o and n., then the cratering efficiency is
constant anc

Vi, (3.24)

resulting in the cube-root scaling.
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In the general case for a soil with finite cohesion, allowing the
coupling efficiency n to be a variable, the solution for the cratering
efficiency L. will be determined by all the terms in Eq. 3.20. That is

n

v GDnymg oy (mg + k4] (3.25a)

where k]

K3/K2. (3.25b)

A study of the experimental cratering data for a given soil-explosive
combination shows that the results follow a consistent trend with increasing
charge weight. At small values of s (small charge size), the cratering
efficiency m, approaches a constant (horizontal asymptote). As o increases, m
decreases, approaching a different asymptote for large T What is desired is a
functional relationship that fits this general trend. In Eq. 3.25a, the
variables =, and =g occur in a particular combination. Consequently the
cratering efficiency can be expected to depend on this combined parameter and
separately on e This additional parameter T4 which is 1in principle a
completely distinct variable, is included as a simple sum

E ]
1]

2 "2 ('"'5 + k]) + k2 '"4 (3-266)

RIE .
ge (5) [tan ¢ + k41 + k, 35; . (3.26b)

n

This single variable 52 includes the strength measures ¢ and tan ¢, as well as
the gravity-scaled-yield parameter ", and the specific energy measure of the
explosive Qe' Whether it alone can be used to account for dependences on Tos Mg

and e separately can only be determined from experiments. Assuming that it
can, then

L H (1.12) (3.27)

for all soils and explosives.

For the specific case of the dry-Ottawa-sand experiments, the cohesion
¢ is zero. Therefore, L is zero and Eq. 3.26a becomes

%2 = (tan ¢ + ky)m, (3.28)
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where the sum (tan ¢ + k]) is a constant. The 52 variable is, therefore, only a

constant multiple different from the gravity-scaled-yield parameter oe As shown
in Fig. 3.1, the sand data are well represented by a power law of the form
(Schmidt and Holsapple 1978a, 1980)

-0.47
v, = 0.198 w,700472 (3.29)

In terms of the 7, variable, Eq. 3.29 can also be written

52 -0.472 :
'Nv = 0.194 m . (3.30) &

The measured value of ¢ for this material was 35° giving tan ¢ = 0.70.
Experimental results for materials with different values for tan ¢ determine the
empirical constant k]. A value of 0.1 was chosen to be consistent with the
various soils tested., The factor k1 is a measure of the relative importance of
the potential energy Lerm compared to the Mohr-Coulomb confining-pressure
strength term in the energy balance (Eq. 3.15). The fact that k1 is relatively {
small compared to tan ¢ for granular materials indicates that the dominant
influence of increased gravity or increased charge size in crater formation is
not the increasing potential energy contribution, but the increased lithostatic

ar

T g T

pressura. Only for a material with zero angle of internal friction will this
dependence on increasing size be dominated by the potential energy contribution.
For ky = 0.1, Eq. 3.3U becomes

\
Vo017 +0)7Y
giving the form of the function H in Eq. 3.27 1
(1?2) = 0.174 ;2‘0'472 (3.32)
The usefulness of the particular combination of terms defining iz,
(Eqs. 3.26) is shown in Fig. 3.3 for various soil-explosive pairs. For ail
32
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materials tested, ", Versus the parameter iz can be fitted by a single straight
line on a log-log plot.

The evaluation of the 52 parameter requires values for the strength
properties of the various soils, as well as the material properties of the
explosives. Experimentally determined values for the cohesion ¢ ana the anqgle
of internal friction ¢ were measured using static triaxial tests (see Appendix
B). These values are listed in Table 3.1 for dry Ottawa sand, KAFB desert
alluvium, and the oil-base clay. Tabie 3.2 lists the values of specific energy
Qe and mass density & for the various charges used in this study. The three
sizes of PETN charges have different Qe’ because a fixed amount of silver azide
initiator was used in each of the various sizes. The value of the specific
enerqy Qe for each composite charge was calculated by dividing the energy
release due to both the silver azide and the PETN by the sum of their masses.

A value of unity for the other empirical constant k2 in Eq. 3.26, was
determined by trial and error. The final results are shown as a curve of "
versus 52 for the three materials and the two different explosives in Fig. 3.3.
In contrast to Fig. 3.1, the combined gravity-yield-strength parameter 52
accounts for thc differences in gravity, size, strength and charge properties,
with particularly good agreement for the sand and alluvium experiments. All the
data points iie near a single straight Tline. Only the clay data shows
appreciable scatter, which is discussed below. These results provide
experimental justification of the particular combination of parameters defining
the iz parameter.

[t is instructive to rewrite the function L H (iz) in terms of the
gravity-scaled-yield parameter "o and the strength parameters =, and g
Substituting Eq. 3.26a into Eq. 3.32 gives

/e W 1/3 -0.472
Tos e 0,178 [t (%) (tan ¢ + 0.1)] . (3.33)

Curves generated from this equaticn for each different combination of
soil cohesion and charge properties are shown in Fig. 3.4. It is seen that this
equation does reproduce the observed experimental trends and values. The
agreement is particularly good for the sand and the alluvium data and correctly
matches the shape for both explosive types in the clay which exhibits some
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Table 3.1. Soil Properties.

b Cohesion Internal Friction Angle Density
f Cratering Medium (dyne/cmz) (degree) (gm/cm3)
? Dry Ottawa Sand 0.0 35 1.80

: Dry Desert Alluvium 1.7 x 10° 32 1.60

s Modeling Clay 1.1 x 10° 1.2 1.53

Table 3.2. Explosive Properties

Explosive Mass Energy Specific Energy Density
Type (gm) (erg) (erg/gm) (gm/cm3)
PETN 0.49 2.24 x 100 4.54 x 100 1.93
PETN 1.34 7.18 x 10'° 5.34 x 10'0 1.78
: PETN 4.08 2.27 x 1010 5.56 x 1010 1,73
? PN 1.70 2.24 x 1010 1.32 x 10'° 3.10

g T g
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scatter. Possitle causes of this scatter include rate effects which violate the
similarity requirements at fixed "o sample preparation, aging of the clay and
dependence of material properties upon temperature which varied slightly from
shot to shot (see Table 2.3). Additional experiments are required to better
define the clay behavior leading to the observed scatter. Nevertheless the mean
values iare in good agreement.

For small values of ", (small charge mass W),
value given by

v apnroaches a constant

-0.472
"y = 0,174 (o) (3.34)
v : P e

and is therefore determined by the cohesion and density of the cratering medium
and the specific energy of the expiosive. Equation 3.34 agrees with the
differences in the observed asymptotes for the various combinations tested.
Only if ¢ is zero will this cube-root regime not be observed, as is the case for
the dry Ottawa sand data.

For sufficiently large values of charge size, the " term in Eq. 3.26a
will dominate. In this large-charge-size regime, the curves generated from Eq.
3.33 are asymptotic to the equation

1/3 -0.472
. W
n, = 0,174 [%; (3)  (tan e +0.1)] (3.35)

which is independent of the cohesion of the material. This is a straight line
on a log-log plot of m, Versus m,.

3-3 GENERALTZATION TO OTHER SOIL TYPES

Figure 3.5 shows the expected behavior for a generic material having
both firite cohesion and finite angle of internal friction. The horizontal
asymptote described above is shown, as well as the asymptote for large values of
charge size. The transition value of oo corresponding to the intersection of
these two straight line asymptotes, is

n

C
2 T PQ(0.T + tan &) (3.36)
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which is determined by the cohesion, the angle of internal friction, the coil
density and the specific energy.

Using the definition of "o the critical charge mass ccrresponding to
this transition is

c 3
W =8 [og {tan ¢ + 0.1)J : (3.37)

A curve depicting the transitional charge size for TNT in terms of the
strength parameter c/e (tan ¢ + 0.1) for various values of gravity g is shown in
Fig. 3.6. The strength ranges for common soils are indicated on this figure in
a very approximate way. This figure indicates, for example, that at 1 G the
transitional charge mass for alluvial materials is in the range of a ton to a
kiloton of TNT.

These results explain some of the apparent discrepancies observed in
explosive cratering tests. In alluvium, for example, small-scale tests do not
extrapolate to large-scale field tests, as can be seen based upon the strength
model given unere. Swall tests in alluviun at 1 G are in the cohesiun-dominated,
cube-root regime. Existing large-scale field tests are around the transition
charge size. These field data (Chabai, 1965) are compared with the calculated
behavior for TNT explosive (Qe = 4,19 x 1010 erg/gm) in desert alluvium as shown
in Fig. 3.7. The predicted crater volume is based entirely upon the centrifuge
experimental results, using charge sizes on the order of a few grams of either
PETN or PbN6. The 5000-1b shot Ties right on the predicted curve. There is
some scatter among the three 256-1b shots, but the mean value lies on the curve.

Another interesting result is a comparison of the clay and the sand
cratering efficiencies. At small "5 values (small charge size) the clay volumes
were substantially below those for sand. This is consistent with the idea that
sand is "strengthless" and clay has finite cohesion. For large o (large charge
size) the cratering efficiency in clay is qreater than in dry sand. In this
regime, the cratering efficiency is dominated hy the angle of internal fr,iction,
which introauces an effective strength due to the large lithostatic pressure.

tay has a near-zero angle of internal friction. Consequently, for large
confining pressure, the dry sand is "stronger" than the clay, which explains the
observed crater volumes. This general behavior is in gualitative agreement with

calculated r2-ults of 0'Keefe and Ahrens (1978) who used a Mohr-Coulomb strength
model with a high-pressure cutoff.

39

e e e ) S




*u333weaed yjbusajs-|eradew SNSUIA IN] 30 PL3}A |euoiilsuedl g°tf “big

9

T&& BB+ T0d _ y33wvavd NOILISNYHL NOISTHOD
2

wb |
m
B 1 ]
uot 1 J X
2 2
X
b=
it 3
” -
) 1
“ IW T
i _ __ ANVS  ¥VINNYY9
NO0¥ G¥VH, XJ0¥ 140S: WNIANTIV ;| AVID , ISICY . A¥d
S1105 NOWWOD 304 SIONVY HIONIULS ILVWIXO3ddV




- - S . - - o~ -

*s3|ns3aa |ejudwpaadx’d abnjjpajuad uodn £|310s paseq |aIpow |[edj3A|eue ue yjiM ejep plajj jo uosjaedwo) /°¢ °bi4
O 11V IN1 40 1IHOIIM

191 IW L D uoj | By | wb |
1 T 1 T T T T T 1 T T | I T 0:0— A
i
- B o
A
)
(6x911) sqU 9T ©
| (6% 8922) 91 000§ ¥ e ol !
(S961) 10904
- 20Q ©o#7Z - oioQ pl|eYy . >
LNL wnianjly 459s3Q o
Z
- —1 —
(@]
i i 3
m
\ =
i v . <
o
c
lmo— M
5 4 3
I\n..v
| «.coﬁ u_toEv M — ol
() A 4
i . . ]
v 0 Am\_;%m O+ LML LY =A
r -
1 e | | i 1 | |
0l




SECTION 4 ]
f CRATER RADIUS AND CRATER DEPTH ©

Significant variations in crater shape versus scaled energy were
observed for the different soil-explosive combinations tested. These variations
include differences in overall shape, as measured by the aspect ratio (ratio of
the radius to depth), and more detailed features, such as terraces and central
mounds. For the purposes of this report only the differences in radius and

maximum depth, are considered. '
Nondimensional forms for the crater radius r and the crater depth h are

BRSNS S

!

‘ p)1/3 {

' = 4.1 l

| L r (W ( ) \

{- 1/3 .

; =N (ﬁ) (4.2) b
s1'

A1l the results obtained to date for " and for h for dry sand, clay,
: and 4-percent moisture alluvium at zero depth of burst are shown in Figs. 4.1
and 4,2 as a function of the gravity-scaled-yield parameter e The data points |
for dry Ottawa sand are, as given previously (Schmidt and Holsapple 1978a), b
along the curves described by 3

v = 0.766 ﬂ2‘0'159 (4.3)

‘ . and

‘ n = 0.154 n2-0°]64 (4.4)

{

which qgive very qood straight-line fits using these logarithmic scales.

For the alluvium data points, considering only those with
? (approximately) 4-percent moisture, the acquisition of additional data has led
to an interpretation, incorporating the cohesion of the medium, different than
| that previously given (Schmidt and Holsapple 1978a). The data for the radius
has the same gqualitative trend as does the crater volume data. A functional form
for a quantitative model is given below. The trend of the depth data, however,

is not even qualitatively the same as that for either the volume dr the radius.

N
3
t
[
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An attempt was made to model both the radius and depth data using the

same strength model developed for the volume data (Section 3). However, the

data do nct appear to be consistent with this interpretation., Some reasons for
this are discussed.

The strength model for volume was based on the energy available and
upon the work necessary to excavate the crater. However, the dependence of the
work required on the specific shape of the crater was not considered. Thus, the

theory is expected to be more suitable for the volume, than for shape variables

such as radius and depth. Since the volume is approximately proportional to the

radius squared times the depth. the radius is the dominant dimension determining
the volume. Consequently, the radius behavior might be expected to exhibit the
same trend as the volume and, perhaps, the depth to a lesser degree.

[t is clear that slope <tability considerations may rule out certain
crater shapes as either the explosive size or gravity is increased. For
example, MeKinnon and Melosh (1978) have shown for craters with vertical walls
and flat bottoms that there is a maximum depth, due to the initiation of
slumping. The value depends upon the parameters oqgh/c and tan 4. Subsequent
work by Melosh and McKinnon (1979) indicates that craters of parabolic shape
also cannot exceed some maximum depth. This trend is consistent with
observations of James (1977, 19/8).

From the following equality

Q
ogh _ pey1/3 @ (M \1/3 Pe 5)1/3
AL 0. () = ) (4.5a)
= ﬂh T’2/(‘W4 173]/3)1 (4‘5b)

a limiting value on pgh/c implies a limit on the crater depth variable as a
function of D) for a given soil-explosive comhination which determines " and
‘"3.
/ -
™ <K L) 1r3]'3 "o ] (4.6)
The constant K depends on tan 4 ana crater shape profile. If, to first

order, it can be assumed that slumping due to stability limits does not change
the crater volume, the prediction of crater volume only requires a consideration
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of the energy balance. The radius is influenced to some degree by stability
considerations, and the depth and the aspect ratio (r/h) may be dominated by
stability.

The centrifuge does give a tool for direct simulation of large-scale
craters. For the soils and explosives over the range of scaled energy tested,
the data points in Figs., 4.1 and 4.2 give predictive vaiues for both radius and
depth. For granular materials, like sand and alluvium, L
explained with a functional form like that obtained for the volume. The clay
craters were significantly different in shape, and the theory generated from

versus mp can be

enerqgy balance considerations alone was not sufficient to explain the data.

At small values of the gravity-scaled size parameter o the "
variation for the alluvium is essentially constant (independent of wz). This is
a regime of cube-root scaling where all the crater dimensions are determined by
the cohesion of the material. The dry sand, which has essentially no cohesion,
does not show this behavior,

As the variable "o is increased, the results become more influenced by
lithostaetic pressure. As discussed in Section 3, this is due to two factors:
the increased strength, due to the 1lithostatic pressure ard the angle of
internal friction; and the additional work that must be done to excavate the
crater as the size or the gravity increases. For the volume variable o the
data show a transition regime, curving from the constant e asymptote for small
", values to a sloped straight-line asymptote (on log-log plot) for large ™)
values. The radius parameter U for alluvium shows the same general trend, but
the exact form of the function that fits the data is different.

As given above, the effects of strength for the various materials
considered can be measured by a generalization of the combined strength-
gravity-scaled yield parameter 52 given by Eq. 3.26b as follows

_ g W\]/B ¢
Ly = -Q-e(—é-/ [Al tan ¢ + Az] + A3 —D‘Q-e. (4.7)

There are three terms in this parameter. The A] tan ¢ term is a measure of the
work against the material strength increase due to confining pressure. The A2
term is a measure of the work against gravity, and the A3 term measures the work
to overcome the cohesion during the crater excavation. The values of each of
the constants determine the relative importance of each of these terms.

Ak it e i . DECIEEPY. ST ~




For the volume data, A] was taken as unity, A2 was taken to be 0.1, and
Ay as 1.0, as discussed in Section 3. However, for the radius data, different
values are seen to be more appropriate. This is not surprising, since the
different work terms vary in importance in determining radius, as compared to
the depth or the volume.

As shown in Fig. 4.1, the values for . for alluvium and dry Ottawa
sand all converge at large values of e This indicates that there is little or
no dependence on tan ¢, since this strength contribution determines any varia-
tion in dependence on x, for large values of n,. Thus, for the radius data, A,
was taken to be zero and 52 can be divided by A2 giving

' 1/3
e G IR W (4.8a)
T = Y «0a
2 Qa's 4 er
where now
A4 : A3/A2 . (4.8b)

To find the best value of A4, the cohesion-determined asymptotes at,
small values of T, can be used. The functional form expected, based on the
results of Section 3, is

-a

ﬂr = K ;2 . (4-9)

For dry Ottawa sand with zero cohesion, Eq. 4.8a gives

| 1/3
- -9 (K
1T2 TTfL) Q (6) [} (4']0)
e
so that the fit for L Eq. 4.3 becomes
v =0.159
L 0.766 "o . (4.11)
Hence for the Ottawa sand radius data
K = 0.766 (4.12a)

and
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a = 0.]59. (4-‘2!)) E

For materials other than sand this result can be generalized by

; substituting the complete definition of }'? (Eq. 4.8a) into Eq. 4.11, giving

3 - !
? -0.159 |
* = g (W,\1/3 c i
E T 0.766 [O; (5) + A4 _[Rj;] . (4.]3) -
i | | !
% The constant Ay 1s determined by the value of the cohesion-dominated asymptotes .

, at small values of no.  Setting m, = 0, !

| v, = 0.766 (a,) 015 (S0 1% (4.14) ;

e i

Alluvium data for n» . at small ny values are taken from Piekutowski (unpublished
data)--shot numbers UDRI-646 through UDRI-651 in Table 2.2. For these shots, A4
= 0.5 gives a good fit. This completely fixes the dependence of m,. ON the other

!
’ variables and the final result is i
i
{

1/3 -0.159

- q (W c
n. = 0.766 [Qe(é) + 0.5 pol (4.15) j

The curves generated from this equation, together with the data points for dry
Ottawa sand and alluvium, are shown in Fiq. 4.3.

As a final measure of crater shape, the aspect ratio, r/h, will be i
discussed. As suggested above, slope stability considerations are expected to
play an important role in determining values of this crater dimension. The !
slope stability depends upon the material strength, which has two components:
the cohesion and the angle of internal friction. For a material with zero

cohesion and non-zero angle of internal friction (such as the dry Ottawa sand),
stability is independent of gravity and size. That is, stability of a certain
shape at small scale or at small gravity implies stability at large scale or at
large gravity. This follows from the fact that, while increased size or gravity

requires greater strength, the strength increases as the size or gravity

!
z

| increases due to the increased lithostatic confining pressure (i.e., strength
{ proportional to pgh tan ).
i
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On the other hand, the stability of a material with small angle of
internal friction but large cohesion will depend both on the scaled size and on
gravity. Consequently, a variation of shape is ant.:ipated with increasing
size.

The parameter “2 correlates all crater-size data very well. It
accounts for differences of size, gravity and source energy density. However,
for shape measures such as the aspect ratio, "2 may not be the most appropriate
independent parameter. For example, energy-density effects may not play a role
in crater shape. The stability arguments given above suggest that for a
cohesive material the dimensionless parameter Pgh/c may be more significant.
(It should be noted that this pi-group is not independent but merely a
combination of the original set as shown in Eq. 4.5b.)

Fiqures 4.4, 4.5 and 4.6 show aspect ratio results for the various
soils, Fiqure 4.4 is a composite plot showing the aspect ratio for ali three
materials versus "2. Figure 4.5 shows the alluvium aspect ratio versus Pgh/c,
and I'iq. 4.6 shows the same for clay. The expectations are supported by the
data. For dry Ottawa sand, the aspect ratio is essentially independent of
scaled size, as indicated on Fig. 4.4, The value is about 4.6 with +10 percent
variation,

For the alluvium, Fig. 4.5 is thought to be more meaningful than Fig.
4.4, In Fig. 4.5, with the stability parameter Pgh/c as the abscissa, the
aspect ratio shows as a gradual decrease (more hemispherical shape) as the
parameter increases. For comparison, the equivalent 1-G crater depth is shown
on the top as a second abscissa scale. This trend is not expected to continue
to ever-increasing crater sizes. For very large sizes, slope stability dictates
that the crater walls can never get steeper than the angle of friction for the
material. A lower 1limit on r/h should be given by the reciprocal of tan®. For
alluvium, this limit value is r/h = 1.6 as shown in Fig. 4.5. With increasing
crater depth the aspect ratio is expected to become asymptotic to this Timit.
Interestingly, the TEAPOT ESS crater, whose depth was 20.4 m, had the smallest
aspect ratio of all the large NTS alluvium craters, a value equai to 1.62.

Fiqure 4.6 shows the clay results as a plot of aspect ratio versus the
stability parameter. For small values of Pgh/c, the craters are nearly
hemispherical, As the stability parameter increases, there is a gradual
increase in the aspect ratio. Only one data point, shot 25-X has a uniquely
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greater aspect ratio (flatter crater). It also has the largest value of the
stability parameter, which probably acccunts for its unique flat profile,
McKinnon and Melosh (1978) have found, for "“transient" craters with a cake-pan i
shape, that a stability limit occurs at a definite value of Pgh/c for a given @

material with a given tan ®. For cake-pan-shaped craters, they found the value

_ to be about 6.0. For the present experiments, craters seem to retain a lower l
F value of aspect ratio, up to a value of Pgh/c equal to approximately 18. This i
i is equivalent to a value of Pgh equal to 2.1 x 106 dyne/rmz, Shot 25-X is the |
; only shot over this threshold.

A check on the existence of a stability limit based on Pgh/c was made
as an adjunct to shot 25-0. This crater was formed at low G with a resulting ;
Pgh/c equal to 0.8. Subsequent to the cratering event, the gravity was '
increased to 518 G for 100 seconds, which wou 4 have resulted in a Pgh/c equal <
to 42 had the crater shape remained constant. However, the crater slumped |
considerably as can be seen in Fiqure 4.7. The final aspect ratio was 2.1,
about the same as that for crater 25-X which was formed at high G. The final 1
slumped values of Pgh/c for 25-0 was equal to 23, and Pgh was 2.5 «x 106 !
dynes/cmz. This gives compelling evidence that, for this clay, all large volume
craters will have a limiting value of Pgh equal to 2.5 x 106 gm/cm-secz. At 1

G, with ? = 1,53 gm/cm3. the limiting depth is about 16 meters for all charge
sizes.

Crater 25-X, formed at high G, was also subjected to the 518-G

environment for 100 seconds to provide a control point. As can be seen in Fig.

i 4.7, it underwent negligible shape change suggesting that a stable shape was
formed upon excavation. This was confirmed when both craters, 25-0 and 25-X,
were cut in two using a thin wire to reveal the crater cross sections.

The lTow-G crater, 25-0, showed marked evidence of flow and collapse of i
the transient crater formed at low G, whereas the high-G crater, 25-X, showed no
evidence of a transient crater or any significant flow or slumping. Fiqgurec 4.8
is a comparison of the iwo cross sections. They show the same approximate final
shapes, but were arrived at by very different processes.

In this experiment, using the oil-base clay material, the crater formed
at high G, corresponding to a 1-G field event of 564 metric tons of PETN, did
not go through a transient stage and collapse.

-
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Fig. 4.8, Comparison of crater cross sections, Shot 25-0 formed at
10 G shown to the right, Shot 25-X formed at 517 & shown
to the left, Both craters were subsequently spun at 518 G

: for 100 seconds. Note flow pattern an< structure of crater
: floor in 10-G crater. (Aiso see Tigs, A23-A26, Fig. 4.7 and
text,)
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SECTION 5
MOISTURE CONTENT

Several shots were designed tc determine the effect of moisture content
on cratering phenomena in desert alluvium. Four shots with moisture contents
from less than 0.7 percent to 7.5 percent were made in addition to the series of
shots at approximately 4-percent moisture.

Significant differences due to moisture content were found. Static
triaxial tests were performed on specimens with various moisture contents. The
strength properties were found to depend strongly upon moisture content.
Consequently, it is expected that differences in cratering behavior should be
observed, The results of the static material-property tests are summarized in
Tabie 5.1. Two values of cohesion are shown for each case. One of these is
based on the zero-confining-pres.,ure intercept from triaxial tests. The other
is obtained by a direct shear test.

A1l variable moisture tests were performed at a gravity-scaled-yield
parameter "2 about equal to 7 «x 10'6. This corresponds to about 70 metric tecns
of TNT at 1 G. The variation of cratering efficiency “v with moisture content
at this "2 value is shown in Fig, 5.1 (also see Fig. 3.4). The dependence of
aspect ratio r/h on moisture is shown in Fig. 5.2.

Although an explicit correlation to measured strengths was not
attempted since all the data were for a fixed scaled size, certain qualitative
behavior is noteworthy. Both the crater size and shape depend markedly on
moisture content at this scaled size. The cratering efficiency decreases as the
moisture content decreases, with the largest changes occurring as the alluvium
becomes more dry. This is probably due to the significantly larger angle of

internal friction noted for the dry alluvium. At this scaled size, the value of
m

2
contribution.

Since all samples with moisture content greater than about 2 percent
have about the same angle of friction, small changes in cratering efficiency
would be expected. The results are consistent with this expectation, except for
shots 17-X and 17-0. These two shots, while consistent with each other, seem to
be small compared to the others. Fiqure 5.3 shows the measured wet density
versus moisture content. Note that the samples with 2.7-percent moisture appear
anomalous on this curve also. It may he that sample preparation variations for

is in the regime where that friction angle is the dominant strength
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Table 5,1,

Moisture Content
%

<1.0

2.4 (high pressure) 2.0 x 10

300'4-0

4.4 (high pressure) 1.7 x 10

7.2

Summary of material property tests on KAFB desert alluvium.

(See Appendix B.)

Cohesion
Triaxial test

(dyne/cmz)
2.8 x 10°
5

6.5 x 10°
5

3.2 x 10°

58

Direct Shear
(dyne/cmz)

0.4 x 10°

0.7 x 10°

2.1 x 10°

Angle of Internal
Friction

(degree)

46
36
36.5
32
37
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the 2.7-percent-moisture experiments explain the results of 17-X and 17-0.

The variation of aspect ratio with moisture, as shown in Fig. 5.2,
again shows a consistent trend. As the moisture content is decreased, the
crater becomes flatter., For large moisture content, the crater becomes more
nearly hemispherical. There was no consistent variation in the measured values

: of angle of friction for specimens with moisture in excess of about 2 percent.
1 The only consistent variation in strength for these samples was the cohesion
measured in the direct shear tests, as shown in Table 5.1, This leads to the

{ conclusion that it is the decreasing cohesion that causes the flattening of the
craters as the moisture content 1is decreased. At th2 other extreme, the
| 7.5-percent-moisture specimen with the greatest cohesion has a bowl shape very
nearly the same as the clay.
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SECTION 6
SATURATED SAND RESULTS

The feasibility of performing centrifuge cratering experiments in
saturated sand was assessed, Six shots were performed in three different types
of sand., The results are in qualitative agreement with the strength theory
developed above and because of their importance to interpreting the Pacific
Proving Ground (PPG) nuclear cratering events, a discussion is included here.

Figure 6.1 shows the results of these six experiments as a plot of the
cratering efficiency =, versus the gravity-scaled-yield parameter m,. Also
shown are the results of six 1-G shots by Piekutowski (unpublished data). The
line representing the dry Ottawa sand results is shown for comparison.

At small values of oy the data show significantly reduced cratering
efficiency as compared to the dry sand. Shot 28-X at 10 G, shows a much lower
cratering efficiency. However, for this crater some lateral washing, due to
wave motion, was observed on the high-speed-movie coverage during the slowdown
of the centrifuge. This was consistent with a reduced crater cross section.
For that reason, 1t is thought to have partially filled in an actual crater
volume that was larger. This occurrence is also suggested by the shape of that
crater, which was much flatter than all others.

If shot ?8-X is discounted (or considered a lower 1imit), the data are
consistent and show the same trend as that observed for the 4-percent-moisture
alluviun. At Tow values of n,, the cratering efficiency is independent of 5.
This cohesion-dominated, cube-root range corresponds to an "apparent" cohesion
(Scott, 1963). As the size parameter ) increases, the cratering efficiency
crosses over the dry-sand curve, and the saturated-sand cratering efficiency is
greater than that for dry sand.

This general behavior is entirely consistent with the strength theory
given in Section 3, if the apparent cohesion and the strength envelope of a
saturated soil is considered. Seed and Lee (1967) show that the total-stress
failure envelope for a saturated sand under undrained conditions is distinctly
different than for drained conditions. The undrained test, which corresponds to
dynamic phenomena, allows the pore water to carry significant portions of the
total pressure or to cavitate, which can influence the effective strength., For
dense sands the net strength envelope has an apparent cohesion even though the

dry sand itself has none. Furthermore, for sufficiently large confining
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pressure, the angle of internal friction for the total stress envelope is much
smaller than that of the dry sand materia! itself. Seed and Lee (1967) present
data for undrained tests on saturated Sacramento River sand of various
porosities. For initially consolidated conditions, the angle of friction for
large confining precsure is on the crder of 7-8 degrees, as opposed to 37
degrees for the dry sand. For urconsolidated initial conditions and large
confining pressure the angle is zero.

These considerations, in conjunction with the strength theory of
Section 3, indicate that at small ", a saturated sand should behave as a
cohesive material and have a cube-root, cohesion-dominated regime. As "o is
increased, a transition to a gravity-dominated response is expected. For
sufficiently large Tos the effective angle of friction is zero or very small,
and the cratering efficiency should be greater than that for dry sand.

The values of the aspect ratio r/h for the saturated sand centrifuge
shots are shown versus egh in Fig. 6.2. If the angle of friction is small for
large values of oo then the stability considerations given for the clay results
would also apply to .he saturated sand. That is, for large sizes, there would
be a limiting value to egh/c and sufficiently large craters would have much
greater aspect ratios (r/h). This trend is, of course, observed in the PPG
nuclear craters as seen in the comparison plot for aspect ratio in Fig. 6.3. To
facilitate the comparison between the centrifuge-formed craters and the field
data, a scaled abscissa is used. For the field shots G equals one and the
actual depth is shown. For the centrifuge shots the actual crater depth is
multiplied by test condition G value. The intent of this figure is to illustrate

how the crater aspect ratio increases with crater depth for the saturated sand.
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SECTION 7
CONCLUSTONS

The simulation of large-scale cratering events at subscale on a
centrifuge has been successfully extended to a variety of important materials.
These include desert alluvium with various moisture contents, water-saturated
sand, and an oil-base clay. The results clearly illustrate the dependence of
crater volume and shape on gravity and, consequently, the need for elevated
gravity in order to correctly model Tlarge-scale events at subscale. The
accumulated data, in conjunction with previous 1-G results, have identified
three differing mechanisms that dominate in different size regimes. The results
have been unified into a soil-strength mathematical model that can be used to
predict cratering in a variety of materials, and with various high-explosive
sources.

It has proved feasible to conduct tests in water-saturated sands. At
small-scaled sizes, the cratering efficiency in this material is less than that
in dry sand., This is attributed to the "apparent cohesion" of a dense saturated
granular medium under undrained conditions. At large scaled-sizes, the
cratering efficiency exceeds that of dry sand. This is attributed to the small
friction angle of the material when the pressure is in excess of the critical
confining pressure of the sand. These interpretations are consistent with the
soil-strength model that has been presented.

Tests have also been performed in desert alluvium with various
controlled moisture contents. The data show a strength-dominated regime at
small-scaled sizes and become more-or-less asymptotic to the dry-sand behavior
at scaled explosive-source sizes in the kiloton and above range. Smail
variations in the moisture content had a significant effect on both crater size
and structure, consistent with the measured material-strength properties and the
model presented.

Material property differences also produced large differences in crater
shape and structure. The dry sand craters had essentially constant shape with
varying scaled size. The alluvium craters, at a fixed moisture content, showed
a trend toward shallower craters at decreacing size. For fixed scaled-source
size, shallower craters were observed with decreasing moisture content.

The most dramatic change of shape with size was observed for the clay
and the safturated-sand craters. In both cases there was a threshold above which
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the craters became increasingly shallow. This threshold has been interpreted as
a slope-stability limit. There is also evidence from the clay-crater data that
large-scale shallow craters do not necessarily go through a transient deeper
bowl-shaped phase as commonly suggested.

The shape of the saturated-sand craters is consistent with the PACE
field experiments. Extrapolation of the observed reduction of aspect ratio
(radius/depth) with yield is consistent with the trend observed for the PPG
nuclear craters.

This experimental study successfully examined the applicability of the
centrifuge technique to a variety of real-world materials. The material
properties were sufficiently well controlled and characterized so that a
meaningful mathematical model that predicts the effects of material properties
on cratering behavior has been generated. Its validity has been cemonstrated
over a range of more than nine orders of magnitude of scaled yield and the model
can be used as a high-explosive baseline for nuclear yields of interest,
Included in the scaled-yield parameter is a dependence upon source energy
density. The validity of this parameter has been demonstrated over a range of
four to one in energy density for high explosives. For impact cratering, a range
of more than two orders of magnitude on enerqgy density is in agreement with this
same scaled-yield parameter (Schmidt and Holsapple, 1978a). Furthermore, usinqg
a "working gas" concept as defined by Butkovich (1967) to establish a value for
nuclear energy density appropriate to the time-scale of crater excavation, this
source model promiscs to provide a scaling tool allowing application of these
centrifuge results to the prediction of nuclear craters (Schmidt et al. 1979).

Results obtained are only for half-buried charges. They have
convincingly demonstrated that the centrifuge provides a viable method to
determine cratering behavior for various soils at large explosive yields of
interest. In particular it can be used to examine conditions leading to the
slumping of transient bowl-shape craters. Further, this is of particular
interest in the case of iturated media which may undergo blast-induced
liquefaction and thereby reduce the shear strength to below that required for
stability.

Recommendations are to extend the date base to include tangent-above
charge configurations. As height-of-burst is increased, the transition between
the strength-dominated cube-root regime and the gravity-dominated regime is
expected to be different from that observed for half-buried charges.
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Preliminary h.o.b. data for scaled yields above this transition indicate that
the scaling exponent is slightly less (1/3.8) than observed for half-buried
explosives (1/3.6). This behavior must be examined in particular for
water-saturated soils of varying porosity. Small differences in the scaling
leads to Tlarge discrepancies in predictions for large yields. Centrifuge
techniques provide a means to test these various mechanisms.
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APPENDIX A
CENTRIFUGE SHOT RECORDS

}' This section contains all the data for the elevated gravity centrifuge
experiments, A table is given for each run which includes the test conditions
for the two shots performed at the opposing rotor ends. Following each table is

. a figure which contains a comparison plot for the two craters and a set of
documentary photographs.
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SHOT NUMBER 14-0 14-X

DATE 9/19/77 9/19/77
{ PURPOSE m Test ﬂz Test
1
E CHARGE DESCRIPTION C1CS-1.265(8-3) CICS-4(B-5) ;
; CHARGE MASS (gm) 0.13 AgNy/1.23 PETN 0.13 AgN4/3.94 PETN i
; CHARGE RADIUS (cm) 0.565 0.826 j
CHARGE CONFIGURATION Half-Buried Sphere Half-Buried Sphere
; TEST BED MATERIAL Permoplast Clay (#52) Permoplast Clay (#47) i
g TEST BED DENSITY (gm/cc) 1.53 1.53 |
| MOISTURE CONTENT (%) -- ‘- |
TEST BED GEOMETRY Homogeneous Homogeneous
i i
i CENTRIFUGE SPEED (rpm) 571 471 ?
f GROUND ZERO RADIUS (cm) 124.5 124.5 i
| CENTRIFUGAL ACCELERATION (G) 454 309 é
; i
’ CRATER VOLUME (cc) 75.4 244 i
CRATER RADINS (cm) 417 5.91 %
MAX CRATER DEPTH (cm) 2.59 4.23 i
CRATER ASPECT RATIO (r/h) 1.61 1.40 |
CRATER C/L DEPTH (cm) 2.59 4.23 ;
LIP RADIUS (cm) 5.05 7.20 |
LTP HETGHT (cm) 0.90 1.22 7
LIP VOLUME (cc) 35 79.3
: PI, 7.59E-6 7.26E-6
- Py 98.0 93.4
Pl 4.46 4.26
PI, 2.92 3.04

|
i
1
|
|

A2




SHOT NUMBER 14-0
RANGE (cm) DEPTH (cm)
0.0 2.594
0.6 2.526
1.2 2.397
1.8 2.226
2.4 1.923
3.0 1.440
3.6 0.774
4.2 -0.045

. 4.8 -0.749

E 5.4 -0.824

E 6.0 -0.430

Z 6.6 20.046

f 7.2 -0.049

5 7.8 -0.059

| 8.4 -
9.0 -

; 9.6 -0.065

E 10.2 -

| 10.8 -
1.4 -0.097
12.0 -
12.6 -
13.2 -0.134
13.8 -
14.4 -
15.0 -0.201

; 15.6 -

: 16.2 .

t 16.8 -0.311

| 17.4 .

E 18.0 -

| 18.6 -
19.2 -
19.8 -

: 20.4 -

% 21.0 N

14-X

DEPTH (cm)
4.231
3.986
3.942
3.826

3.575
3.196

2.948
2.366

1.590
0.800

‘00136
-0.829

‘10223
-0.859

'002]2
0.008

0.022

—
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Fig. A2.  Shot 14-0, crater formed at 454 G by spherical 1.34-gm PETN

charge half-buried in "Permoplast" oil-base clay.
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fig. A3,  Shot 14-X, crater formed at 309 G by spherical 4.08-gm PETN
charge half-buried in "Permoplast’ oil-base clay.

A6




SHOT NUM3ER
DATE
PURPGSE

CHARGE DESCRIPTION
CHARGE MASS (gm)
CHARGE RADIUS (cmj
CHARGE CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (qm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEFD !rpm)
GROUND ZERO RADIUS (em)
CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)
CRATER RADIUS (cm)
MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm

LIP RADIUS (cm)

LIP HEIGHT (cm)

LIP VOLUME (cc)

P12
PIR

P[H

20-0

5/18/78

10-G Check on
UDRI Data

CILAS-13(B-3)

1.71 PbNg

0.508

Half-Buried Sph re

KAFB D.A. #10/#11
1.582

3.9

Homogeneous

84.4
125
10

43.4

.37
.91
.37
.80
.16
48.3

O N - W —

6.08F -7
40.4
5.23
1.4

20-X

5/18/78

10-G Check on
UDRI Data

CICS-5(B-5)
0.13 AgN3/0.36 PETN
0.390

Half-Buried Sphere

KAFB D.A. #8/4#9
1.579

4.0

Homogeneous

84,6
125
10

26.1
4.61
1.28
3.60
1.28
7.20
0.14
4?2.4

1.376-7
84,1
6.81
1.89
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SHOT MUMBER 20-0 20-X
RANGE (cm) DEPTH (cm) DEPTH (cm)
0.0 1.36¢ 1.283
7.6 1.306 1.251
1.2 1.126 0.958
1.8 0.822 0.583
2.4 9.777 0.472
3.0 0.653 0.439
3.6 (.507 0.29%
4.7 0.3a¢ 0.111
4.8 v.158 -0.053
5.4 -0.017 -0.105
6.G -0.070 -0.107
.6 -0 -0.119
7.2 -0.749 -0.139
7.8 -0.164 -0.133
8.4 -0.145 -0.103
9.0 -0.017 -0.100
9.6 -0.113 -0.078
0.2 -0.095 -0.068
104 -0.081 -0.059
11.4 -0.076 -0.050
12.0 -0.066 -0.046
2.6 -0.037 -0.031
13.2 -0.050 - N2/
13.8 -0.026 -0.022
14.4 -0.021 -0.020
15,0 -0.019 -0.014
15.6 -(.007 -0.014
16 2 -0.105 -0.014
6.8 -0.001 -C.002
17.4 G.060 -0.002
4.0 0.006 -0.004
18.6 0.006 -0.005
T2 0.014 -0.002
19.8 - -0.009
20.4 -- -0.018
21.0 -- --
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Fig. Ab,

Shot 20-0, crater formed at 10 G by spherical 1.70-gm PbN
charge half-buried in KAFB desert alluvium.
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Fig. A6.  Shot 20-X, crater formed at 10 G by spherical 0.49-gm PETN
charge half-buried in KAFB desert alluvium,
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SHOT NUMBER
DATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (gm)
CHARGE RADIUS (cm)
CHARGE CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (qm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)

CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)

CRATER RADIUS (cm)

MAX CRATER DEFTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (em)

LIP HEIGHT (cm)

LIP VOLUME (cc)

PIZ
PLy
PIR
PTy

21-0
5/26/78

Maximum n2

CICS-4(B-12)

0.13 A1N3/3.94 PETN
0.826

Half-Buried Sphere

KAFB D.A. #11
1.596
4.1

Homogeneous

610
125
520

103

5.99
2.37
2.53
2.37
7.20
0.32
47.7

1.22E-5
40.3
4,34
1.73

A12
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21-X
5/26/18
Ma ximum n2
CILAS-13(B-4)

1.71 PbN6

0.508

Half-Buried Sphere

KAFB D.A. #12
1.584
4.3

Homogeneous

610
125
520

23.7
3.69
1.58
2.34
1.58
4.80
0.19
12.6

3.16E-5
22.1
3.60
1.54
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SHOT NUMBER
RANGE (cm)
0.0
Z 0.6
k 1.2
' 1.8
2.4
3.0
3.6
4.2
9 4,8
| 5.4
6.0
s 6.6
5 7.2
7.8
8.4
9.0
' 9.6
1 10.2
10.8
11.4
12.0
12.6
13.2
13.8
14.4
15.0
15.6
| 16.2
| .
17.4
18,0
18.6
19,7
19.84
20.4
21.0

o nmes vmee  wom -

21-0
DEPTH (cm)
2.374
2.351
2.367
2.237
1.908
1.333
0.945
0.737
0.504
0.245
-0.002
-0.215
-0.315
-0.265
-0.183
-0.124
-0.092
-0.060
-0.031
-0.03
-0.015
-0.012
-0.010
-0.006
-0.310
-0.003
0.002
0.0M
-0, 06¢
-0.000
-0.004
-N.006
-0.005
-0,007

21-X
DEPTH (cm)
1.579
1.568
1.282
0.696
0.548
0.334
0.038
-0.188
-0.189
-0.113
-0.066
-0.037
-0.020
-0.013
-0.004
-0.003
-0.002
0.001
0.004
0.0M
0.012
0.014
0.012
0.006
0.004
0.010
0.005
0.010
0.0Mm
0.001
0.001
0.002
0.002
0.007
-0.001

o
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Shot 21-0, crater formed at 20 G by spherical 4,08-gm PETN
charge half-buried in KAFB desert ailuvium,
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Fig. A9, Shot 21-X, crater formed at 570 G by spherical 1.70-gm PbN6 ‘
charge half-buried in KAFB desert alluvium.
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SHOT NUMBER
NATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (qm)
CHARGE RADIUS (cm)
CHARGE CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (gm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)

CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)
CRATER RANDIUS (cm)
MAX CRATER DEPTH (
I
(

cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADTUS (cm)
LTP HETGHT (cm)
LIP VOLUME (cc)

P12
PIV
PIR

PIH

22-%-1
6/2/78
Stress Gages

CILAS-13(BR-5)

1.70 PbN6

0.508

Half-Buried Sphere

Permoplast Clay (#453)
1.53

Homogeneous

613
132.7
557

40.4
3.32
2.37
1.40
2.37
4.20
0.52
12.9

3.398-5
36.4
3.21
2.29

Al7

22-X-2
6/2/78
Stress Gages

CILAS-13(B-6)

1.70 PbN6

0.508

Half-Buried Sphere

Permoplast Clay (#55)
1.53

Homogeneous

82
132.7
10

53.4
3.24
2.92
1.1
2.92
4.20
1.09
51.3

6.08k-7
48.1
3.13
2.82
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SHOT NUMBER 22-X-1 22-X-2

RANGE (cm) DEPTH (cm) DEPTH (cm)

0.0 2.372 2.918

0.6 2.283 2.807

1.2 2.042 2.596
é 1.8 1.727 2.266
2 2.4 1.168 1.661
3.0 0.362 0.523
; 3.6 -0.382 -0.810
f 4.2 -0.523 -1.088
? 4.8 -0.009 -0.289
; 5.4 0.005 -0.172
i 6.0 0.034 -0.115
; 6.6 0.058 -0.076
| 7.2 0.079 -0.050
5 7.8 0.084 -0.048
| 8.4 0.101 20.027 1
5 9.0 0.089 -0.027 )
* 9.6 0.070 -0.010

10.2 0.033 0.009

10.8 -0.005 0.008

1.4 -- --

12.0 -- - |

12.6 - -

13.2 - -

13.8 - .- |

14.4 - . |

15.0 - - .

15.6 .- .- ‘

16.2 -- --

16.8 -- .- !

17.4 - - |

18.0 . ..

16.6 -- -- :
| 19.2 -- -- ‘
; 19.8 - --

E 20.4 - -
i 21.0 -- -
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Fig. A11.  Pre-shot photograph (22-X-1) showing placement of three
carbon stress gauges, Piezo pin used to generate scope
trigger shown at 10 o'clock pusition,
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Pre-shot photograph (22-X-2) showing placement of three
carbon stress gauges. piezo pin used to generate scope
trigger shown at 4 o'clock position,
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f Fig. A14, Shot 22-X-2, crater formed at 10 G by spherical 1,70-gm PbN i
: charge half-buried in "Permoplast" oil-base clay.
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SHOT NUMBER
DATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (gm)
CHARGE RADIUS (cm)
CHARGE CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (gm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)
CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)
CRATER RADIUS (cm)
MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (cm)

LIP HEIGHT (cm)

LIP VOLUME (cc)

P12
PIy
PIR
PIH

23-0
7/14/78
Alluv-

CICS-9(B~2)

0.13 AgN,/1.0
0.390
Half-Buric! Sphare

KAFB D.A. #IR/#2R
1.566

3.8

Homogeneous

358
125
179

19.1
3.96
1.28
3.09
1.22
4.80
0.1
8.58

2.45E-6
61.0
5.83
1.89

A24

23-X
7/14/78
Alluvium Strength

L1u8-4,06/B-13)

0.13 AgN4/3.95 PETN
0.826

Half-Buried Sphere

KAFB D.A. #3R/#4R
1.570

4.0

Homogeneous

258
125
93

169

7.52
2.50
3.01
2.48
9.60
0.40
127

2.18E-6

65.1

5.47 -
1.82 .
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SHOT NUMBER
RANGE (cm)
0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0
6.6
7.2
7.8
8.4
9.0
9.6
10.2
10.8
11.4
12.0
12.6
13.2
13.8
14.4
15.0
15.6
16.2
16.8
17.4
18.0
18.6
19.2
19.8
20.4
21.0

23-0
DEPTH (cm)
1.221
1.282
0.967
0.644
0.406
0.223
0.072
-0.048
-0.107
-0.101
-0.063
-0.039
-0.018
-0.006
-0.004
0.005
0.00¢8
0.012
0.015
0.016
0.020
0.018
0.022
0.023
0.028
0.024
0.028
0.033
0.033
0.038
0.032
0.037
0.037
0.028
0.030

A25

23-X
DEPTH (cm)
2.482
2.495
2.503
2.470
2.226
1.744
1.415
1.151
0.952
0.799
0.592
0.337
0.101
-0.092
-0.263
-0.355
-0.399
-0.37
-0.311
-0.252
-0.192
-0.150
-0.127
-0.101
-0.077
-0.062
-0.047
-0.038
-0.034
-0.030
-0.028
-0.021
-0.022
-0.026
-0.024
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“ig. Ale.

$Shot 23-0, crater formed at 179 G by spherical 0.49-gm PETN
charge half-buried in KAFB desert alluvium.

A27

b PP P [T S VT SR YRR 1 "I

e




i
"
1
!
i
%
’1
, {
A ?
}
;; |
{
' KAF DA
s ’ I AR N
[N & S
TR
ey AR ‘

Fig. A17. Shot 23-X, crater formed at 93 G by spherical 4,08-gm PETN
charge half-buried in KAFB desert alluvium,
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SHOT NUMBER
DATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (gn)
CHARGE. RANIUS (cm)
CHARGE CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (gm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)
CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER G/L DEPTH (cm)

LIP RADIUS (cm)

LIP HEIGHT (cm)

LIP VOLUME (cc)

PI
PIV
PIR

2

X

24-0

8/3/78

Effect of Moisture
(Dry)

CICS-4(R-15)

0.13 AgN43/3.95 PETN
0.826

Half-Buried Sphere

KAFR D.A. #11/#12
1.540

<0.7

Homogeneous

468
125
306

108

6.71
1.91
3.51
1.91
8.40
0.39
90.0

7.19E-6
40.7
4,85
1.38

A29
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24-X

8/3/78

Effect of Moisture
(8%)

CICS-4(B-14)

0.13 AgN,/3.96 PETN
0.826

Half-Buried Sphere

KAFB D.A. #7/#8
1.657

7.5
Homogeneous

468
125
306

136

6.10
3.25
1.88
3.25
7.20
0.32
54.1

7.19E-6
55.2
4.52
2.41
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SHOT NUMBER
RANGE (cm)
0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0
6.6
7.2
7.8
8.4
9.0
9.6
10.2
10.8
11.4
12.0
12.6
13.2
13.8
14.4
15.0
15.6
16.2
16.8
17.4
18.0
18.6
19.2
19.8
20.4
21.0

24-0
DEPTH (cm)
1.912
1.877
1.836
1.661
1.439
1.225
1.031
0.862
0.672
0.481
0.272
0.042
-0.197
-0.372
-0.388
-0.304
-0.227
-0.165
-0.128
-0.090
-0.07
-0.051
-0.038
-0.049
-0.037
-0.038
-0.035
-0.028
-0.032
-0.026
-0.027
-0.023
-0.020
-0.023
-0.026

A30
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24-X
DEPTH (cm)
3.252
3.236
3.147
2.915
2.€85
2.196
1.129
0.754
0.538
0.300
0.038
-0.180
-0.321
-0.307
-0.222
-0.157
-0
-0.080
-0.052
-0.052
-0.036
-0.024
-0.021
-0.017
-0.013
-0.012
-0.007
-0.01%
-0.015
-0.015
-0.009
-0.005
-0.002
-0.0M
0.001
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Fig. A19.
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Shot 24-0, crater formed at 306 G by spherical 4.08-gm PETN )
charge half-buried in KAFB desert alluvium (<0.7-percent

moisture content). Note flat shallow crater shape and

compare with Fig, A20.
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Fig. A20,

Shot 24-X, crater formed at 306 G by spherical 4,08-gm PETN
charge half-ouried in KAFB desert alluvium (7.5-percent

moisture content). Note deep crater with bench in wall cnd

compar. with Fig., A19.
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SHOT NUMBER
DATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (gm)
CHARGE RAD;:US (cm)
CHARGE CONFIGURATION

TEST BED MATERIAL

TEST BED DENSITY (am/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)
CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (cm)

IP HEIGHT (cm)

LIP VOLUME (cc)

PI2
PIy
PIR
PIy

chei rmesnmaniiniat gl

25-0
8/14/78
Small "2

CICS-4(B-17)

0.13 AgN3/3.97 PETN

0.826

Half-Buried Sphere

Permoplast Clay (#58)

1.53

Homogeneous

85
124.6
10.1

498

6.82
6.01
1.13
5.01
9.00
2.19
340

2.37€-7
187
4.92
4.33

A34

25-X
8/14/)7
Large m,

CICS-4(B-18)

0.13 AqN3/3,96 PETN

0.826

Half-Buried Sphere

Permoplast Clay (#59)

1.53

Homogeneous

6n9
124.8
517

150

5.74
2.73
2.10
2.73
7.20
0.65
45.5

1.21E-5
56.2
4.14
1.97
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SHOT NUMBER 25-0* 25-X*

DATE 10/16/78 10/16/78

5 PURPGSE TEST FOR STABILITY OF CRATER SHAPE

F » (100 SEC AT 518 G)

b

k

g CENTRIFUGE SPEED (rpm) 610 610

: GROUND 7ERO RADIUS (cm) 124.6 124.6

: CEMTRIFUSAL ACCFLERATION (G) 518 518
CRATER VOLLME (ce) 235 142
CRATER FADIUS (cm) 6.77 5.72
MAX CRATER DEPTH {cm) 3.23 2.53
CRATER ASPECT RATIO (r/h) 2.10 2.26
CRATER C/L DEPTH (cm) 3.23 2.50

: LIP RADIUS (cm) 7.80 7.20

i LIP HEIGHT (cm) 0.52 0.62

i LIP VOLUME (rc) 48.5 30.7

) P, 1.22E-5 1.22E-5

| PI, 83.1 53.2

v PI, 4.88 4.12

5 PI,, 2.33 1.82

VP‘r

;

§
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1
SHOT NUMBER 25-0 25-0%
RANGE (cm) DEPTH (cm) DEPTH (cm)
0.0 6.006 3.231
0.6 5.954 3.135
1.2 5.846 3.088 ]
1.8 5.690 2.997 !
i' 2.4 5.542 2.839 :
L 3.0 5,252 2.516 ;
; 3.6 4.7 2.249 E
. 4.2 4.382 2.033 !
4.8 3.712 1.696 o
5.4 2.850 1.254 |
6.0 1.692 0.708 §
: 6.6 0.400 0.146 ;o
% 7.2 -0.840 -0.234 !
| 7.8 -1.704 -0.520 ;
‘ 8.4 -2.125 -0.468 :
9.0 -2.185 -0.230
2.6 -2.049 0.015
r 10.2 -0.918 0.168
k 10.8 -0.287 0.120 !
1.4 -0.069 0.105
12.0 -0.020 0.083
12.6 0.020 0.066 .
13.2 0.048 0.059 i
13.8 0.064 0.053 !
4.4 0.079 0.04§ |
; 15,6 0.091 0.028 ?
| 15,6 0.085 0.013 !
[ 16.2 0.081 20.001 ’
| 16.8 0.075 -0.028
7.4 0.048 -0.059 :
18.0 -0.007 -0.110
4.6 - -
19,7 - -
0,7 |
19.8 - --

*Aftar test for stability of crater shape: 100 sec at 518 G

A36

A et S . Twm

T e R 00 A ' (/NN i T U T T W - R17 8 R N



] SHOT NUMBER 25 X 25-X*
RANGE (cm) CEPTH (cm) DEPTH (cm)
0.0 2,725 2.496
/ 0.6 2.752 2.528
‘ 1.2 2,707 2.466
1.8 2.557 2.338
2.4 2.402 2.231 .
3.0 2.155 1.994
3.6 1.832 1.700
v 4.2 1.383 1.290
g 4.8 0.899 0.862
‘ 5.4 0.283 0.264
6.0 -0.253 -0.264
? 6.6 -0.577 -0.534
% 7.2 -0.654 -0.624
5 7.8 -0.329 -0.191
8.4 -0.028 0.072
9.0 0.081 0.068
% 9.6 0.078 0.062
| 10.2 0.068 0.044
10.8 0.06] 0.032
1.4 0.060 0.027
12.0 0.042 0.013
12.6 0.049 0.008
13.2 0.044 0.010
13.8 0.056 0.008
14.4 ©0.058 0.016
15.0 0.066 0.015
15.6 0.074 0.020
16.2 0.073 0.015
16.8 0.059 0.002
17.4 0.03] -0.032
18.0 -0.010 -0.074
18.6 -- --
19.2 -- --
19.8 -- --

*After test for stability of crater shape: 100 sec at 518 G
A37
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Fig.

A23.

Shot 25-0, crater formed at 10 G by spherical 4.08-gm PETN
charge half-buried in "Permoplast" oil-base clay.
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I 2=-O o)l/78
~ 10/500 slump |

Fig. A24. Final crater shape from shot 25-0 after 100 sec at 518 G.
Note depression of 1ip and irregular structure of crater
floor. (Also <ee Fig. A23 and Figs. 4.7 and 4.8 in text,)
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Fig. A25. Shot 25-X, crater formed at 517 G by spherical 4,08-gm PETN {
charge half-buried in "Permoplast" oil-base clay.
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Fig, AZ6. No significant shape chan:e due 10 sTumping o flow was
observed, Crater as or*yinally formed was stable and did

‘ rot show any evidence Lf a transient cavity that was larger

; than the final shepe. (Alsu see Fig. #25 and Figs. 4.7 and

; 4.8 in text.)
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SHOT NUMBLR
NDATE
PURPOSE

CHARGE DESCRIPTIN
CHARGE MASS {gn)
CHARGE RADIUS (cm)
CHARGE CONF IGURATION

1EST BED MATERTAL

TEST BED DENSITY (gm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND ZERO RADIUS (cm)

CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPECT RATIG (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (cm)

L 1P HEIGHT (cm)

L1P VOLUME (cc)

P,
PIV
PIp
PIH

26-0

9/2?7/18

arain Size tEffect
(Dense Saturated Sand)

CILAS-13(B-7)

1.70 PbN,

0.%08

Hal f-Buried Sphere

Sat. Sawing Sand
2,078

>97

Homogeneous

265
127.1
100

122

6.88
2.09
3.29
2.09
7.80
0.25
53.8

6.08E-6
149
7.36
2.23

Ad4

26-X

9/22/78

Grain Size Effect
(Dense Satuyrated Sand)

CILAS-13(B-8)

1.70 PbNg

0.508

Hal f-Buried Sphere

Sat. Bandirg Sand
2.056

>97

Homngeneous

265
127.1
100

54.8
4.80
1.91

2.5]
1.91

6.00
0.20
36.6

6.08E-6
66.3
5.1
2.03

i, bt 3l




SHOT NUMBER 26-0 26-X %

RANGE gcm! DEPTH (cm) DEPTH gcm! _,

0.0 2.094 1.909 t

0.6 2.01 1.892 1

1.2 1.781 1.675 %

1.8 1.645 1.421 :
2.4 1.531 1.188
3.0 1.388 0.847
[ 3.6 1.232 0.539
f 4.2 1.057 0.284
| 4.8 0.815 -0.007
E 5.4 0.528 -0.190
E 6.0 0.299 -0.202
E 6.6 0.081 -0.162
: 7.2 20116 -0.136
| 7.8 -0.249 -0.112
| 8.4 -0.229 -0.095
E 9.0 -0.191 -0.059
9.6 STREY -0.045
: 10.2 -0.120 -0.031
5 10.8 -0.087 -0.030
1.4 -0.066 -0.022
12.0 -0.060 -0.016
12.6 -0.034 -0.015
13.2 -0.023 -0.020
: 13.8 -0.021 -0.013
3 14.4 -0.009 -0.007
; 15.0 -0.010 -0.006
15.6 -0.014 -0.007
16.2 -0.008 0.002
- 16.8 -0.006 0.001
: 17.4 0.002 0.004
| 18.0 0.010 0.004
% 18.6 0.014 0.003
; 19.2 0.024 0.002
- 19.8 0.022 0.004
: 20.4 0.021 -0.001
: 21.0 0.023 -0.008
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Fig. A28, Pre-shot photograph (26-0) showing charge piacement and
initial water level.
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Shot 26-0, crater formed at 100 G by spherical 1.70-gm PbN6
charge half-buried in nearly-saturated dense Ottawa Sawing
sand. Water has been drained to a level below crater floor
to facilitate crater measurement.
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Fig. A30.

]
4

Shot 26-0, close-up photograph of crater formed at 100 G by

spherical 1.70-gm PbNg charge half-buried in nearly-saturated
dense Ottawa Sawing sand. Water has been drained to a Tevel

beiow crater floor to facilitate crater measurement,
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Pre-shot photograph (26-X) showing
initial water level.
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Fig. A32.

Shot 26-X, crater formed at 100 G by spherical 1,70-gm PbN
charge half-buried in nearly-saturated dense Ottawa Banding
sand. Water has been drained to a level below crater floor
to facilitate crater measurement.
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Fig. A33.

e

Shot 26-X, close-up photograph of crater formed at 100 G by
spherical 1.70-gm PbNg charge half-buried in nearly-saturated
dense Ottawa Banding sand. Water has been drained to a level
below crater floor to facilitate crater measurement.
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SHOT NUMBER
DATE
PURPOSE

CHARGL DESCRIPTION
CHARGE MASS (aqm)
CHARGE RADIUS (cm)
CHARGE. CONF IGURATION

TEST BED MATERIAL

TEST BED DENSITY (gm/cc)
MOTSTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED (rpm)
GROUND 7ERO RADIUS (cm)
CENTRIFUGAL ACCELERATION (1)

CRATER VOLUME (cc,

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (cm)

LIP HEIGHT (cm)

LIP VOLUME (cc)

P12

PIV

PIR
PIH

27-0

10/9/78
Saturated Sand
Reproducibility

CILAS-13(B-10)
1./0 PbNg

0.4508

Hal f-Buried Sphere

Sat. Flintshot Sand
2.113
>9/

Homogenoous

1771
100

73.8
6.03
g
A1
o117
7.80
0.31
59,7

—_— W —

6. 0BE-H
91.7
6.48
1.90

453

27-X

10/9/78
Saturated Sand
Reproducibility

CILAS-13(B-9)

1.71 PbN6

.508

Half-Buried Sphere

Sat. Flintshot Sand
7113
Yy

amogeneous

265
127!
100

B6.6
6.09
1.78
3.4?
1.78
7.80
0.36
4.8

6.08E-6
108
6.55
1.91

S




SHOT NUMBER

RANGE gcmz
0.0

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0
6.6
7.2
7.8
8.4
9.0
9.6
10.2
10.8
11.4
12.0
12.6
13.2
13.8
14.4
15.0
15.6
16.2
6.8
17.4
18.0
18.6
19.2
19.8
20.4
21.0

27-0
DEPTH (cm)
1.766
1.701
1.548
1.408
1.249
1.056
0.799
0.544
0.334
0.162
0.007
-0.157
-0.296
-0.313
-0.231
-0.173
-0.113
-0.087
-0.067
-0.052
-0.047
-0.036
-0.035
-0.030
-0.017
-0.017
-0.020
0.003
0.002
0.010
0.01?
0.01
0.004
0.003
-0.003
-0.005

A54

27-X
DEPTH (cm)
1.775
1.757
1.644
1.524
1.393
1.198
0.982
0.707
0.437
0.234
0,026
-0.161
-0.318
-0.363
-0.288
-0.225
-0.180
-0.123
-0.108
-0.095
-0.063
-0.038
-0.030
-0.027
-0.014
-0.015
-0.012
-0.005
0.014
0.015
0.009
-0.001
0.006
0.001
0.000
-0.010
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Fig. A35,

Pre-shot photograph (27-0) showing charge placement and
initial water level.
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Fig. A36. Shot 27-0, crater formed at 100 G by spherical 1.70-gm PbN6
charge half-buried in nearly-saturated dense Ottawa
Flintshot sand. At shot time, water table was tangent
to surface at the charge location,
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f Fig. A37. This photograph shows crater (27-0) after water was drained ;
| to a level below crater floor to facilitate measurement. C

See Fig. A36.
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Fig. A38.

Pre-shot photograph (27-X) showing charge placement and
initfal water level,

A59




Fig. A39. Shot 27-X, crater formed at 100 G by spherical 1.70-gm PbN
charge half-buried in nearly-saturated dense Ottawa
Flintshot sand. At shot time, water table was tangent
to surface at the charge location.
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Fig. A40. This photograph shows crater (27-X) after water was drained
to a level below crater floor to facilitate measurement.

See Fig. A39,
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SOT NUMBER
DATE
PURPOSE

CHARGE DESCRTPTION
CHARGE MASS (gm)
CHARGE RADIUS (cm)
CHARGE CONF IGJRATION

TEST BED MATERIAL

TEST BED DENSITY (gm/cc)
MOTSTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPEED {rpm)
GROUND ZERG RADIUS (cm)
CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME {cc)

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPZCT RATIO (r/h)
CRATER C/L DEPTH (cm)

LIP RADIUS (cm)

LIP HLIGHT (cm)

LIP VOLUME (cc)

PI

2

28-0
11/2/78
High-G

CILAS(B-11)

1.70 PbNg

0.508

Half-Buried Sphere

Sat. Flintshot Sand
2.107
>97

Homogeneous

605
127.1
500

34.1
4.68
1.13
4.14
1.13
6.00
0.27
36.2

3.16E-5
42.3
5.03
1.21

A62

e8-X*
11/2/78
Lovw-G

CILAS(B-13)

1.70 PbN¢

0.508

Half-Buried Sphere

Sat. Flintshot Sand
2.109
>97

[Homogeneous

84
127.1
10

67.5
5.81
1.45
4.01
1.30
7.80
0.12
15.5

6.08E-7
83.7
6.24
1.56

*, diameter orly
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SHOT NUMBER
RANGE (cm)

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0
6.6
7.2
7.8
8.4
9.0
9.6
10.2
10.8
11.4
12.C
12.6
13.2
13.8
14.4
15.0
15.6
16.2
16.8
i7.4
18.0
18.6
19.2
19.8
20.4
21.0

28-0
DEPTH gcmz

1.129
1.018
0.862
0.779
0.698
0.595
0.453
0.197
~-0.050
-0.198
-0.270
-0.206
-0.138
-0.118
-0.07/8
-0.070
-0.055
-0.039
-0.035
-0.018
-0.009
-0.005
-0.006
-0.008
-0.001
0.002
0.002
0.002
0.002
0.004
0.002
0.003
0.003
0.001
-0.002
-0.020

A63

28-X*
DEPTH (cm)
1.299
1.455
1.445
1.339
1.176
0.895
0.722
0.510
0.264
0.124
-0.014
-0.052
-0.072
-0.124
-0.061
-0.022
-0.031
-0.017
-0.046
-0.022
-0.021
0.022
0.016
0.013
0.038
0.035
0.030
0.025
0.033
0.030
0.030
0.017
0.024
0.013
0.008
-0.008
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Fig, A42,

Shat 28-0),
charge half-
Mintshot sa

crater formed

buried in nea
nd,

A65

at 520 G by s
riy-saturated

pherical 1.70-gm PbN6
dense Ottawa




I et LT

L—

e i

- .

»

Fig. A43.  Pre-shot photograph (28-X) showing charge placement and ﬁ
initial water level, ‘

A66




Fig. Ad4, Shot 28-X, crater formed at 10 G by spherical 1.70-gm PbN6
charge hal?-buried i1n nearly-saturated dense (Ottawa

Tintshot sand, At shot time, water table was tangent
to surface at the charge location,
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Fig. A4S, Shot 28-X, close-up photograph showing effects of water wave
washing of crater walls, [-axis shown on photo is line of
tangency of water table in flight. Sece tig. A44,
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SHOT NUMBER
DATE
PURPOSE

CHARGE DESCRIPTION
CHARGE MASS (am)
CHARGE RADIUS (cm)
CHARGE CONF IGURATION

TEST BED MATERTAL

TEST BED DENSITY (qgm/cc)
MOISTURE CONTENT (%)
TEST BED GEOMETRY

CENTRIFUGE SPTED (rpm)
GROUND ZERD RADIUS (cm)

CENTRIFUGAL ACCELERATION (G)

CRATER VOLUME (cc)

CRATER RADIUS (cm)

MAX CRATER DEPTH (cm)
CRATER ASPECT RATIO (r/h)
CRATER G/L DEPTH (cm)

LIP RADIUS (em)

LTP HETGHT (em)

1P VOLUME (cc)

PL,
PTy
PIR
PTy

?29-0
11/16/78
Ground Motion

C1CS-4(B8-20)

0.13 AqN3/3.96 PETN
0.826

Half-Buried Sphere

Permoplast Clay (#61)
1.53

Homogeneous

460)
174.5
294

211

5,70
3.71
1.61
3.77
7.20
0.90
77.9

6.90E-6
79.1
4.11
2.72

A69

29-X
11/16/78
Ground Motion

C1CS-5(B-6)

0.13 AgN,/0.36 PETN
0.390

Half-Buried Sphere

Permoplast Clay (#60)
1.53

Homogeneous

602
124.5
504

17.6
2.56
1.84
1,39
1.84
3.00
0.49
9.93

6.90F -6
55.0
3.74
?2.69




SHOT NUMBER 29-0 29-X

RANGE (cm) DEPTH (cm) DEPTH (cm)
0.0 3.767 1.839
0.6 3,772 1.638
1.2 3.696 1.358
1.8 3.548 0.884
2.4 3.320 0.135
3.0 2.956 -0.400
3.6 2.527 -0.369
4.2 2.029 -0.048
4.8 1.300 0.012
, 5.4 0.392 0.045
F 6.0 -0.385 0.071
E 6.6 -0.752 0.079
e 7.2 -0.903 0.096
| 7.8 -0,589 0.103
| 8.4 -0.285 0.119
| 9.0 0.014 0.116 |
, 9.6 0.050 0.119
| 10.2 0.065 0.122
| 10.8 0.070 0.119
11.4 0.083 0.119
12.0 0.079 0.110
12.6 0.078 0.104
13,2 0.067 0.080
13.8 0.046 0.063
14.4 0.041 0.046
15.0 0.020 0.014
5 15.6 -0.001 -0.008
i 16.2 -0.022 -0.039
; 16.8 -0.054 -0.096
| 17.4 -0.095 -0.137
18.0 -0.150 -0.202
18.6 -- -
| 19.2 -- --
j 19.8 -- --
f 20.4 -- .
E 21.0 -- --

v
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Fig. A47.

Shot 29-0, crater formed at 294 G by spherical 4,08-gm PETN
charge half-buried in "Permoplast" oil-base clay, Gridwork,
holes and sand columns were used to record residual ground
displacement in near field. Compare with 1/2-scale event

shown in Fig. A48,
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Fig, A48. Shot 29-X, crater formed at 504 G by spherical 0.49-gm PETN
charge half-buried in "Permoplast" oil-base clay. Gridwork, 3.
holes and sand columns were used to record residual ground
displacement in near field. Compare with twice-scale event
shown in Fig. A47,
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APPENDIX B
MATERIAL PROPERTIES OF TEST SOILS

REPORT ON
LABORATORY TESTS
CENTRIFUGE CRATERING STUDY 1]
FOR
BOEING AEROSPACE COMPANY

NOVEMBER, 1978

SHANNON & WILSON, INC.
Geotechnical Consultants
1105 North 38th Street
Seattle, Washington 98103
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REPORT ON
LABORATORY TESTS
PERFORMED ON SOIL MATERIALS
FOR
CcNTRIFUGE CRATERING STUDY I1

I. PURPOSE AND SCOPL

This report presents che results of a series of unconsolidated-
undrained (UU) triaxial compression tests and direct sheer tests performed on
five soil samples provided by Boeing Aercspace Company. Threa UU tests and one
direct shear test were performed on each material type to determine the shear
strength parameters of the materials. The samples were designated as folluows:

Ottawa Sand No. 20, Uttawa Sand No. 30, Ottawa Sand No. 70, KAFBDA and Modeling
Clay.

IT.  TEST PROCEDURES

A. Unconsolidated-Undrained Triaxiaj Tests

Three (UU) test specimens wers prepared for each sample., Test speci-
mens of the sand were prepared by sifting the dry sand through a No. 16 mesh
sieve from a height of 52 inches into a split mold tc obtain the density
specified by your office. For the alluvium type soil, KAFEDA, the density of
the test specimens were obtained by vibrating a known weight of material at its
natural water content into a split mold of known velume. Test specimen of the
modeling clay were prepared by placing a known weighit of clay in ten equai layers
into a split mold and hand tamping each layer with a rod to obtain the desired

density. The mold used was lined with a thin rubber membrane that was expanded

against the split mold by vacuum.
After cach UU test specimen was prepared, it was mounted in a triaxial
test chamber ard subjected to a specified triaxial confining pressure. It was

censtant
confining pressure and without allowing drainage. For each material type,

then sheared under strain-controlied conditions, while maintaining a
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triaxial confining pressures of 10, 20 and 30 psi were used on the first, second
and third test specimens, respectively, as specified.
confining medium for all tests,

Water was used as the

Simultaneous readings of load and deformation were ohtained at

coqular
time intervals throughout the shearing period.

Deviator stress and axial strain
values were then computed from these readings.

B. Direct Shear Tests

Direct shear tests were performed 1in general accordance with ASTM

D-3060-72. Une direct shear test was performed on each material type, Test

specimens of the sand were prepared in a similar manner as those for the UU

specimens except they were prepared in a 4 x 4-inch shear box. The alluvium and

modeling clay samples were packed in the box to the designated density.

After each specimen was compacted in the shear box, a very normal load

was applied. Each specimen was sheared horizontaly in & constant strain shear

device under drained conditions.
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